If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+7=16
We move all terms to the left:
49x^2+7-(16)=0
We add all the numbers together, and all the variables
49x^2-9=0
a = 49; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·49·(-9)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*49}=\frac{-42}{98} =-3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*49}=\frac{42}{98} =3/7 $
| -x2-16=0 | | 1x-12=4 | | 3k+11=131 | | 12−3h=6 | | 6x+2/3+4x=-2/5 | | 8k+48=3(k+33) | | p4=-24 | | 9a÷a=3 | | 4(2x-3)+(3x-4)=14 | | 1/5(3t-4)=1/3(t+12) | | y-275=489 | | 2u-4u-24=48 | | 2*p=-8*p+10 | | x^2-3x=304 | | 2(x−8)=−4 | | 3x+5x+2=9 | | x-2+54+2x=360 | | 13r+4=13r+28 | | -(u/3)=-32 | | -8(y+3)=5y+28 | | y-10.5=4.37 | | 5x-6=4+3.3x | | 2x+x+1=2x+21 | | 13r+4=3r+28+10r | | -2=5(y+5)-8y | | w/3+17=44 | | 2*y=y-2 | | 17=2v-17 | | 3u+40=11u | | 6(5-6)=4x | | -m=2*m+6 | | 10=-2/3w |